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THE TILTING MODEIN FIELD-REVERSEDCONFICUMTIONS

J. L. Schwarzmei6r, D. C. Barnes, H. R. Lewis,
C. E. Seyler, ●nd A. I. Shestakov

Fiald Reversed Configurations (FRCO) experimentally have ●xhibited

remarkable stability on the magnetohydrodynamic (KtlD) timescale, 1-3 despite

4-11 It I* ●a~y ;O believenumerouo KHD calculations ●hewing FRCS to be unstable.

that local modec are stabilized by finite krmor radius (FLR) ●ffects, but more

puzzlin8 is the apparent stability of FRCS against global modes, where one would

●xpect FLR effects to be leas important. In this paper we study the tlltin8

mode, which MID has shown to be ● rapidly growing global mode, The tiltil.g mode

in FRCS 18 drivan by the preosure 8radient, and magnetic compression ●nd field

line bendin8 aro the ●tabiliZin8 forces. A ●ematic of the ●volution of the

tilting mode is shown in Fig. 1. The tilting modt is considered dangerous,

bacause it would laad to rapid tearing across tha ●eparatrix (see Fig. lc).

Unlike sphuromaks, the tilting mode in FRCS hae ● ●a~aratrix that in fixed in

space, so that the mods is strictly internal.

KHD Raauit~——
We have studied tho W stability of tho tilti~ mod~ with two Indopendont

codes12: a erial. function code that computoe ●iganfrequenciea, ●nd a linear time

dependent MHD simulation code. The principal conclusion- from our linear Kill)

calculations ●ra:

1.) All NRC ●quilibria with flux surfacac rangins from ●lliptical to highly

r~cetrack ●ra urmtablo to tilting with typical growth timm (for FRX-B)

Y-l - Ius, wharaas ●xpcrimantal lifatimss art Tlife - 20-40w. (Ssa Fiu. 2a-C*)

+
2.) Tha diaplacoment g in tha (r,x)-plans is primarily ●xial, in+ ~1 ■ gz~~

whara in ●nd ~1 ●rc tho Mormal ●nd pacallcl displacamanto of ● fluid tlamont

f mm

f lUX

That

that

from

● flux surface ((0 is datarmincd from Incomprcsoibility). If $labolc ●

●urface and s is tha arclmsth ●long ● B-lina, we find that ~z(~o,m) = 0,

18, the axial diaplacsmtnt vsniohas #t tha mparatrix, $ - 0. This meano

tha tilting nods i. intarnal, to tha calculation 10 carriad out in ~space

$= -1 (O-point) CO ~ = O. (Ih Fig. 2d-f.)



3.) For eU@tical wil~br~a each flu eurface ha a rigid ZXinl displacement,

tz(~,M) = tz(~), ●nd the mximw displacement occurs ● t the O-point. (See

Fius 2d.)

4.) For racetrack equilibria gz(o,c) ia ● strong function of s, with the axial

displacement localized to the tlpe of tho flux surfaces. (See FIIB. 2e,f.)

Several reasona have been proposed for the obeemed stability of FRCS

●gainst tilting: 1) Though unstable the instability saturates at low ●mplitude

(the 3-D MALICEcode ●howc this i. not tme for ●lliptical ●quilibria); 2)

NonIdeal effects might stabilize the mode (Shestakov’s resistive lhemr MID code

still shows instability); 3) FRC spin-up might stabilize the tilt (but Ta >>

kY-l); 4) Kinetic effects might be important e n for this global mode. We feel

that the last possibility 10 the mos~ likely, particularly since there ● te

“betatron” particles that have large radial orbits about the field null (ace

Fi~. 3b).

Fi&ure 1. Schematic ●volution of tha t~lti
7

mode. ●) Equilibrium .tate, b)
Linear modo is an ●xial ohift of flux wr ●ce., c) Nonlinear mode may lead to
tearlnu in dashed circula- :e~ions.



Fig. 2 Realistic numericml ●quilibria, (a)
parameters, (c) highly racetrack csce. For

(d)-(f) ● re shown the corresponding projections of
the (r,z)-plane from the initial value cod..

Kinetic Treatment——

z ●

elliptical caseg (b) FRX-B
each equilibrium (a)-(c>, in
the displacement vector g in

& ●xact linear stability formaliom for inhomo8nneous Vlaoov-Maxwell systems

has been deviaad by Lewis, Symon, ●nd Seyler. 13 Sayler ●nd Barnes14 used this

formalism to study kinatic ●ffectm on the tilting mode with the Vlacov-fluid

model (Vlasov ions; cold, massless ●lectrons). Let f@t;lJ ba the Mpiace

tranaform of tha first order dimtributlon function of the ions- Since 0 18 m

ignorablo coordinate of th~ ●quilibrium ●ll perturbation quanticias have

O_dapendanct of ●ino , whera n is a fixed integar for the problem. In general W*

can ●xpand

f](d,?;~) ‘~ ~~(~) ‘r(tSt)”

ma functions Wrs ● rc th~ Uouville ●igmfunctiono, ●nd thy satisfy

Lwr - iVRWr,

(1)

(2)
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tiere L in the ●quilibrium Vlaeov operator given by the Poisson bracket of the

●quilibrium Eamiltonian, L = [ ,H]. I+ is the Idouville eigenvalue, ●nd it is ●

sum of term containing integral multiples of the bounce frequencies of all the

periodic equilibrium particle motions. The eub~cript r Etanda for the eet of

single particle invariaat8 that labels a particular orbit, aa well ●m a oec of

integers that labele harmonica of the equilibrium bounce motions. The sum over

r in Eq. (1) means sum over all diecrete labelc ●nd integrate over all

continuous labela. In the came that there are three (exact or adiabatic)

constants of the eingle particle motion in the ●quilibrium fields, then the

Liouville elgenfunctione Wr(iflif) can be found ●xplicitly in terms of Int-grale

of ●quilibrium quantities. When the form (1) i. substituted into the linear

Vlssov eqution the coefficients I’r(u) can be found in Lenna of the perturbation

;(t;u). When that reeult for fl IIS eubetituth into the source term of the

linearized Maxwell’s equations, one obtaina a homogeneous Integro-differential
+

equation to be solved for ~. In the case of the tilting ❑ode for ●lliptical

FRCe, ;(t;UJ) + Cz(v;u)t so the linearized equtione of motion have the general

form

where b is the dieperaion opelator. Equation (3) can ●ioo be obtained from the

variation of the diBper8iOn functional A, defined by

with raspect to F:. In the Vlaaov-fluid modal the diepereion functional haa the

form

(4)

uhara W in ●xactly tho MHD incomprcssibl~ potential ●nergy, ●nd the kinetic

tanas ● re contained in V, defined by

l(wr,H1)12
V(u) = u Z f:(E)

r k -u’

tiara fo(E) is tha ●quilibrium ion

(5)

distribution function, and E 1. the total
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energy of ● particle. In Eq. (5) HI in the e’ngle particle perturbation

Eamiltonian

(6)

The second half of Eq. (6) follows, since In the Vlaeov-fluid model one writes ~,

= ~x~o, and the gauge choice 1s $1 = ~.~o.

orbit integral of the perturbation
‘1

reeonancea occur when IJr - u - 0. For FRCS

momentum Pg are ●xact invariance,, and In

(Wr,Hl) = / d3qd3p W: H1 ia the’

a 1 ong the orbit r, ●nd the particle

the energy E and canonical angular

the work of Seyler and Barnes ‘.t waB

aeoumed that t~.e magnetic moment p iEI an adiabtic invariant. In the limit of

eimll Lamer radiue thie leado to a dispersion functional of the form

‘~

A . -26W+ 2U2K+ @ - R(u) . 00

K is the MD kinetic energy normal~zation, F contains

containe parallel kinetic effects and particle reaonancea.

and solves Eo. (7) for u, it ie easy to show that

stabilizing effect.

(7)

the FLR term, and R

If one neglecte R

the FM term F has a

Neglecting the R term in Eq. (7) leade to a 2nd order ODE for ‘$Z(+). The

first caoe to conelder 10 the pure MHD limit, where F is neglected. One

boundary condition la that {z(PO) = O, and tt,e other boundary condition ie

really s regularity condttion that eliminates the eingular (logarithmic)

solution of Cz($) ●bout the O-point. The regular solution has gz going to a

(nonzero) conetant as * + -1. However, when one ●dds the F term one finds that

eliminating the singular solution of {z ct che o-point leads to n regular

solution that vanishes at the O-point. That is, the addition of ~ ●mount of

FL.R term~, no matter how ●all, leads to ● completely different behavior of tho

●olution in the vicinity of the O-poinr.

indicates that the ●all Mrmor radius treatment

tha flald null ie Incorroct.

A correct kinetic trgatment of tha til~ing

This rasult is unphysical and

of the Ions in the vicinity of

mode in ●n FRC should reco8nize

that there ● ra large ion orbits, especially for tt.e batatron particle-. This

introduce~ two significant complicttionm into tht problam. First, large ion

Larmor radii maan that ● local ●pproximation i. not valid, ●nd hanca tha full

inta8ro-diffarantial ●quation mtiat ba daalt with. Ehcond, to ●van obtain
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expreeoions for the orbit integrals we need to have ●nether ●diabatic invariant

to replace U, which la not invariant for large orbit ions.

Adiabatic Invariant-—.

In order for p to be an adiabatic invariant it is necesssry that B change

little during one cycloidal period of the particle motion. In current FRCn the

radial grdient of the B-field neur the eeparatrix im sufficiently steep thmt ●

thermal ion feels a strong variation In B duri~ a radial oscillation. Figure 3

e$owa particle trajectories for two different thermal ions in the (r,~)-plane

for the Spencer-Hewett ●quilibrium corresponding to FM-B. In Fig. M, bv the

time the “ (cycloidal) particle hae reached z = 1 It bas k-d ● variation in Uof

ALI - 1652, while AJ =- ill%, where J 18 an ~adlabatic invariant, defined in

Eq. (12), with which we replace IJ. In Fig.”XbB the (betatron) particle has a

maximum variation In J of AJ - 282, ●~d for thla partich IJ

(For FRX-C parameters the variation in Band J ● re about 50%

for FRX-B paramatera.) ?%1s means that for current FRCa it la

amaume that IJ i- ●n adiabatic invariant, which in turr, means

MHD ●n invalid modal for FRCSP but ● guiding cmtar description

is craninglema.

of what they ● re

never valid to

t-at not only im.

●lao iv invalid.

Fortunately thera recmina one mall parameter of currant FRCS that can be

exploitad to provide ●n ●diabatic Iwariant to raplaca IJ. That ●all parametar

18 the elongation of the plancm, c. Typically for ●n FRC c 18 in tha range

.15 < c <.25. WC till see that the radial ●ction J in ●n ●diabatic invariant

for elongated FRCS.

The equilibrium single particle HamiltonIan is (pe is a paramatar

throughout)

a~ ~rw ● I=1 , u #

cl) r ‘ ‘“” ‘ “-. b)M-

● u ‘~ : -

u - m -

I

.._-

?i~uro 3. Particlo trajoctorias sod flux surfaces for ●) cycloidal particle,
●nd b) betatron particle, using Y’RX-b prwweara.



-7-

Pr2 PZ2
E(r, pr, z,pz) -=+X+ U(r Dz), (8)

whera the two dimensional potential is

Ipe-e*(r,z)/c12
U(r, z) - + co($), (9)

~r 2

and O is the electric potential determined from ion pressure balance. The

highly elongated nature of FRCS manifesto itself in that the potential variation

in z is much “slower” than it 16 in r. (This is true ●xcept for a highly

racetrack ●quilibrium, where all the axial variation occurs at the tip of the

flux surface on the same spatial scale length me the radial variation. See

Fig. 2c.) Thus to do the perturbation theory for slow z variation we replace
-,.

U(r,z) + U(r,cz), (lo)

trtat c as small in the analysiu, and then at the ●nd let c + 1. T%e goal of

this perturbation analybim la to produce the Hamiltonian that determines the

radial ●nd axial motion to lowest order in c. A reeult of thin procedure ie

that the radial action J, defined by

J(EO,CZ) + \ dr pr(r,Eo.cz),

18 an ●diabatic invariant :

dJ
—- O+O(A.
dt

The pr in Eq. (12) is

Pr(rOEOScz) = {2m[Eo - U(r,cz)])l/2,

(12)

(13)

(14)

whar~ E. is m constant value of the radial HamiltonIan Ho

Pr2
Ho(r~pr,cz) “= + U(r,cz) - conat. 6 Eoo (15)

?or ●ach z in Eq. (15), E. vari~s ovar ● rangs of valuoa. For ●ach z ●nd EO in

Eq. (12), J has a csrtain value. Tha ralation J - J(EO,CZ) ctin be invarted ?O
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give IS. an a function of J ●nd CZ: E. = KO(J, CZ). By ueing ●ultiple time Ocale

analysis on z as (J funccion of time, it can be shown that the Eamiltonian thet

producee the lowest order radial and ●xial motion is

PZ2
K(J,Z,PZ) - KO(J,CZ) +— + O(A.

2m
(16)

Essentially we have transformed coordinates (r,pr) + ($,J), where # is the angle

variable conjugate to J, and we have eliminated # frcm the H.amiltonian to order

C2. The function $ - $(r,pr) can be found in the usual way from the generating

function F(r,J), where pr - aF/ar. By solving Eq. (16) for pz and using the

equation dz/d~ = pz/m, we can show that the (slow) axial time of a particle’e

position is (letting c + 1)

>

J= dz’
T(Z) -

‘1 {:[ E - KO(J,Z’)]}1’2’

(17)

where E is a constant value of the total Hamiltonian K in Eq. (16). lf Z1 and

Z2 are the two turning points of the axial motion, then the ●xial period Tz la a

function of E, J, and P8.

Of couree, J (or p for that matter) is not an adinbatic conetant of the

motion for particlem that pass in the vicinity of the spindle point. In fact,

patticlea fith positive Pe have orbits that are not confined axially (see

Fig. 3a), so these particlee are loot through the spindle point region in an

●xial tranBit time. Since the tilting mode ham a displacement that vanishes at

the -eparatrix, one can only hope that difficulties aa6iociated with the epindle

point are not &n ●aeential part of the stabilization of the tilting mode.

Now that we have the HamiltonIan K chat describes the loweot order radial

and axial motion, we can retur.~ to Eq. (2) to find to lowest otder in c the

Liouville eigenfunctiona ●nd ●i8envaluea. The detaile of this calculation are

lengthy so we merely present the results. In terms of the canonical coordinates

(t,J;T,E;6,P6) we Mv8

wr(+tJpT,E,e,Pe) - dr6(E-E’ )6(J-J’)6(pe-p~)e ‘no ‘r(+pT)t (18)

where
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Ur($DT) - ●xP{i[f$ + fnoll(T) + P~~ + nfleT2(T)]}n (19)

●nd d= 10 a normalizing factor. E’, J’ , and p~ ● re continuous Indices (i. e.,

numbera)c and 1 and p are ●ny integers; theee quantities collectively denote the

label r. The operator L commutes with ❑ultiplication by ●ny function of the

constacts of the motion, and L aleo cocmm-tee with a/aO. Thue w= can be choeen

to be ● aimultaneou8

delta-functions and the

(corresponding t, the

IS chosen here eo that

Ur($+2W,T+Tz)

eigenfunction of these operators, ●nd this ●xplains the

eine ~n Eq. (18). The dependence Of u= on $ and T

two nonignorable direction of the equilj.brium, r and z)

= Ur($,?)o (20)
-z

That ie, Eqe. (18-19) are the Wr for particles that are trapped; a eiL~ilar

expression could bc vritten for particles vho?e orbits are not confined

spatially. The rermining quantities in Eq. (19) are giv~n by

~Ko(J,pe,z(T))
- 21f (J—----

m dr
UO(T) -

aJ )-1
Pr(r,J,p6,z(l))

Tl(?) - T - ~
no ()

~TdT’ uo(~’)

nz = 2W/Tz

m dr ve2(r,Z(T))

Pr(r,J,Pe,z(T)) r

~e(r,z) - [Pe - e#(r,z)/c]/m

; /dT’ ~~(T’)T2(T? - T ‘—

e

(21)

All quantities in (21) can be calculated from the equilibria, and they sre

functione of the conotanta E, J, and POW The Liouvillu ●iganvalue is
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% - Ml. + pllz + nile, (22)

and clearly IJr - ~ D O describeg regomncea

the radial, axial, and azimuthal drift motione

between the wave and harmonics of

of the particles.

Mtn the Liouville eigenfunctiona defined by (18) we can simplify the orbit

integrals as

(23)

$(r,z) iIS known from the equilibrium, and we can ●xpand

(24)

where {~} la a chosen get of expaneion funCtiOnS, and the CO@ffiCient8 Sn are

to be found. Thus Hl(r,z,{z) can be written am a function of r and z. By u~ing

the trangfomationa r - r($,J)pebz) and z - Z(T,E,JtPe), we car express

Hl(r,z,Cz) = f($,~;{an)). Finally, the sum over r in the kinetic term V of

Eq. (5) meane that

A dispersion matrix Dn,n,(w) ia

t,p

constructed from the diaperaion functional ae

n,ndd= aAD
3an*2an,’

and the eigenfrequeccy u io determined by requiring that

clet D(u) = 0.

The procedure just outlined ie ● completely general formulation of the

kinetic tiiting calculation. The numerical computations involved nre

formidable, but we hope faasibla. It may be necessary to approximate varioua

aspects of the kinetic tam V of Eq. (5) beforo numerical

For instance, the highly elongatad nature of FRh implies

of the radial, ●zimuthal, ●nd ●xial motiono ● re quite

●nothar, with

●valuation begine.

that the time scalee

eeparated fran one
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% >> n~ >> nz. (26)

This meane that l/(br - u) is small, except for Z = O. Mditional

●pproximation in the orbit integrala may also be po~aible.

In eummary, <he MH.!lanalyai~ of the tilting mode In F“.Ce hae beev completed,

wit]) tl,e concJ.uaion that all FRC ●quilibria should be very unstable to tilting.

Of the poaaible reaeona for ●xplaining the observed etability of the

experiments, kinetic ●ffeccu appear to ue to be the moat likely stabilizing

mechanism. This problem i& very difficult, because the equilibrium 18

two-dimensional and the mode la global. The magnetic moment p is not conserved

for current FRC parameter, but the radial action J la a suitable adiabatic

invari~nt for elongated equilibria. We have obtained a &eneral expression for
*

the diap~raion functional for the kinetic tilt?ng calculation which IS in a form

suitable for numerical ●valuation. Poaaible an~lytical

problem have been indicated.
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